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Over-parameterization, ungauged basins, and the assessment of the impact of
land-use and climate change are a few of the problems that limit the use of cali-
bration techniques for distributed-parameter models. One approach {o addressing
these problems is the use of g priori parameter-estimation procedures to minimiz-
ing the number of parameters to be calibrated, or to obtain parameter values where
calibration is not possible. A set of modeling and analytical tools is being devel-
oped using the US Geological Survey's Modular Modeling System to facilitate the
development and evaluation of objective a priori methods. Initial testing of these

tools was conducted on basins in the Rocky, Sierra-Nevada, and Cascade Mountain

Regions of the- United States. a priori parameter estimates were made for the
USGS distributed-parameter model PRMS using available digital datasets of ter-
rain, soils, vegetation type and density, and climatological data. Only the Rocky
Mountain basin had an acceptable uncalibrated performance. Moedel petformance
for all basins improved as the parameters calibrated were increased incrementally
from none, to those affecting the water balance, then hydrograph timing, and then
all soils and vegetation related parameters. Problems were identified in the use of
the forest-density dataset as a surrogate for forest cover density. A full evaluation
of the soils dataset for determining available water-holding capacity was not pos-
sible due to the insensitivity of the model to this parameter in these snowmelt
basins. Key issues in a priori parameter estimation for this limited application were
identified to include regional climatic and physiographic differences, dataset limi-
tations, and selection of measures of parameter and model performance. These will

INTRODUCTION

A major difficulty in the use of distributed-parameter mod-
els is the general lack of objective methods to estimate the val-
ues of distributed parameters. Calibration techniques are typi-
cally used to compensate for various sources of uncértainty in
these estimates. However, the transferability of calibrated
results to other basins is often an issue due to the over-para-
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meterization of many distributed-parameter models and the
incorporation of model and data errors in fitted parameter val-
ues. The application of calibration techniques to problems
such as ungauged basins, or assessing the impact of land-use
and climate change, is further limited because there are typi-
cally no measures of system response against which to cali-
brate. Estimating parameters where calibration is not possible,
and -addressing the over-parameterizaﬁon problem by mini-
mizing the number of parameters to be fitted, requires the
development of methods that relate parameter values to meas-
urable climatic and basin characteristics.

The development of methodologies to relate selected model
parameters to climatic and basin characteristics has been con-
ducted by a number of disciplines in the field of hydrology.
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Studies at the point and plot scale have typically been nsed to
define these relations. For example, in the area of soil
physics, Rawls and Brackensiek (1983) developed a method-
ology to estimate soil water-holding capacities and Green-
Ampt infiltration-model parameters using soil-texture infor-
mation. More recent work by Schasp et al. (1998) has
focused on the use of soil-properties data to develop pedot-
ransfer functions for the estimation of water-retention and
hydraulic properties. Similar efforts are being conducted in
other areas with regard to a variety of hydrologic and climat-
ic processes (e.g. Koren, et al., this volume). However, the
application. and evaluation of such techniques over larger
areas have been limited. The ability to define the most appro-
priate parameter-estimation methods for use with different
models in different climafic and physiographic regions, and
to specify the robustness and reliability of these methods and
their associated datasets, are major knowledge gaps.

The increasing availability of high-resolution spatial and
temporal datasets of climatic and basin characteristics now
~ provides the opportunity te investigate and develop a priori

estimation procedures for distributed model parameters. To
facilitate the development, testing, and evaluation of & pri-
ori parameter-estimation methods for a varety of models
and datasets, a set of tools is being developed using the US
Geological Survey’s Modular Modeling System (MMS)
(Leavesley et al., 1996; 2002). MMS is an integrated system
of computer software that provides a common framework
for multidisciplinary research and operational efforts to
develop, evaluate, and apply a wide range of modeling
capabilities and analytical tools. The long-term objectives
of this research effort are to (1) develop and evaluate objec-
tive a priori parameter-estimation methods using available
spatial and temporal datasets, and (2) evaluate and identify
the most robust process-mode! conceptualizations and

parameters for both uncahbrated and cahbrated apphcamons

This paper focuses on the first objective. It describes the
initial development and testing of a set of methodologies
and tools for use with available digital datasets in three
snowmelt regions of the western United States, The effort
was limited to applications in mountainous regions where

snow accumulation and melt processes dominate the hydro-

logical cycle. This provided a focus on commeon hydrologic
processes but in different climatic regimes. As the first step
in a larger, more comprehensive effort, the study was further
limited to only one model and a single basin in each of the
three snowmelt regions. The next steps in this rescarch will
be the application of the tools and knowledge developed in
this study to ten's of basins in the study regions and the
development of a fully integrated set of models, methods,
- and tools to address both research objectives given above.

STUDY BASINS

Snow-dominated, mountain basins were chosen in the
Rocky, Sierra Nevada, and Cascade Mountain Ranges in the
United States. The basins selected (Fig. 1) were (1) the
Animas River basin, which has a drainage area of 1820 kmz2,
and elevation that ranges from approximately 2000 to
4000m; (2) the East Fork of the Carson River basin (here-
after referred to as the Carson River basin), which has a
drainage area of 920 km? and elevations that range from
approximately 1600 to 3000m; and (3) the Cle Elum River
basin, which has a drainage area of 526 km? and elevations
that range from 600 to 2000m. Vegetation on all the basins
is predominantly coniferous forest with a mix of alpine tun-
dra and bare rock occurring on areas above timberline.

MODEL

The USGS Precipitation-Runoff Modeling System

(PRMS) (Leavesley et al., 1983; Leavesley and Stannard,

1995) is a distributed-parameter, physical-process water-
shed model. Distributed-parameter capabilities are provided
by partitioning a watershed into units, using characteristics
such as slope, aspect, elevation, vegetation type, soil type,
and precipitation distribution. Each unit is assumed to be
homogeneous with respect to its hydrologic response and to
the characteristics listed above. Each unit is termed a hydro-
logic response unit (HRU). A water balance and an energy
balance are compuied daily for each HRU. The sum of the
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Figure 1. Study basin locations.



responses of all HRUs, weighted on a unit- area basis, pro-
duces the daily watershed response.

Snow is the major form of precipitation in the Animas,
Catrson, and Cle Flum River basins, and the major source of
streamflow. The snow components of PRMS simulate the
accumulation and depletion of a snowpack on each HRU. A
snowpack is maintained and modified both as a water reser-
voir and as a dynamic heat reservoir. A water balance is
computed each day and an energy balance is computed for
two 12-hr periods each day. The energy-balance computa-
tions include estimates of net shortwave and longwave radi-
ation, the heat content of precipitation, and approximations
of convection and condensation termas. '

PRMS uses daily inputs of solar radiation and the variables
precipitation (PRCP), maximum air temperature (TMAX), and
minimum air temperature (TMIN). Solar radiation was disttib-
uted to each HRU as a function of HRU slope and aspect. Solar
radiation data were not available on a daily basis and so were
computed using existing algorithms in PRMS. Estimates of
daily shortwave radiation received on a horizontal surface were
computed using air temperature, precipitation, and potential
solar radiation. A list of PRMS parameters referred to in this
paper and their definitions are provided in Table 1.

Table 1. Definition of selected PRMS parameters.
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The GIS Weasel

The GIS Weasel is a geographic information system (GIS)
interface for applying tools to delineate, characterize, and
parameterize topographical, hydrological, and biological
basin features for use in a variety of lumped- and distrib-
uted-modeling approaches. It is composed of Workstation
Arclnfo (ESRI, 1992) GIS software, C language programs,
and shell scripts.

Parameter-estimation methods are implemented using

ARC Macro Language (AML) functions applied to avail-

able digital datasets. A library of parameter-estimation
methods is maintained in a similar fashion to the library of
process modules in MMS. For a given model, a recipe file
of AML functions can be created and executed fo estimate
a selected set of spatial parameters. This recipe file can
also be modified to change the parameter-estimation
method associated with a selected parameter, thus enab-
ling the evaluation of alternative parameter-estimation
methods.

Group Paraﬁaeter Definition
GIS W easel covden_win Winter vegetation cover density for the major vegetation type on an
HRU
jh_coef_hru Air temperature coefficient used in Jensen-Haise potential
evapotranspiration computations for each ORU.
rad_tmcf Transmission coefﬁcicﬁt for short-wave radiation through the -win.ter
vegetation cancpy
soil_moist_max |- Maximum available water holding capacity of soil profile
Meteorological adjnﬁx;rain Monthly factor to édi’ust rain i)i'oporti-oﬁ- in 2 mixed rain/show event
bias Precipitation adjustinent factor to account for gage catch efficiency and
other sources of measurement error
t:nai_a]lrajn Maximum' dally temperature above which all precipitation is assumed to
be rain
tmax_allsnow Maximum daily temperature equal to or below which all precipitation is
assumed to be snow
Runoff Tinring emis_noppt Average emissivity of air on days without precipitation
gwilow_coef Groundwater reservoir routing coefficient
i soilZgw_max Amount of the éoﬂ water excess for an HRU that is routed directly to the
associated ground-water reservoir
sstcoef_sq Non-linear sﬁbs’urfabe -reservoir routing coefficient
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XYZ Precipitation and Temperature Distribution

Recent research has resulted in the development of a new

distribution methodology for daily values of PRCP, TMAX,
and TMIN (Hay et al., 2000a,b). Significant geographic fac-
tors affecting the spatial distribution of PRCP, TMAX, and
TMIN within a river basin are latitude (x)}, longitude (y),
and elevation (z). Multiple linear regression (MLR) equa-
tions are developed for each dependent climate variable
(PRCP, TMAX, TMIN} using the independent variables of
X, ¥, and z from available climate stations. The general form
of the MLR equation for precipitation at a given HRU is

. PRCP(HRU} = bo —+ b] X‘CHRU) =+ b2 Y(HRU) + b3 Z(HRU) R (1)

The resulting fit from equation 1 describes a plane in

three-dimensional space with slopes b, b, and b, intersect-
ing the PRCP axis at by. Similar equations are used for
TMAX and TMIN. Use of the station x and y coordinates in
the MLR provides information on the local-scale influences
on the climate variables that are not related to elevation (for
example, the distance to a topographic barrier). To account
for seasonal climate variations, MLR eguations are devel-
oped for each month using mean values of PRCP, TMAX,
and TMIN (dependent variables) and station x, y, and z

(independent variables) from a set of stations selected from

regional National Weather Service and Snow Telemetry
{SNOTEL) stations that fall within and outside the selected
basins. The monthly MILRs are computed to determine the
regression surface that describes the spatial relations
between the monthly dependent variables and the indepen-
dent variables. Note that for each month the best MLR rela-
tion does not always include all the independent variables.
Estimates of daily PRCP, TMAX, and TMIN for each
HRU are computed using the following procedure: (1) mean

“daily values of PRCP (TMAX and TMIN) and cofiéspori- ~~

~ding mean x, y, and z values from a selected station set
{described in the Exhaustive Search analysis below) are
wsed with the slopes of the monthly MLRs to compute a
onique by, for that day and (2) the MER equation is then
solved using the x, y, and z values of the HRUs.
The regional MLR equations, typically developed for

areas thousands to tens-of-thousands of square kilometers in -

size, may urder- or over-estimate the mean precipitation (or
temperature) in smaller basins typically used for hydrologic
simulations. These smaller basins often range in size from a
few hundred to a few thousand square kilometers. Also,

measurement errors associated with precipitation, particu--

larly precipitation gage under-catch of snow, may lead to
significant errors In hydrologic simulations. To address
these issues, an Exhaustive Search (ES) analysis is used to

(1) determine the optimal precipitation- and temperature-sta-
tion sets to anchor the xyz distribution methodology; (2) pro-
vide an estimate of bias associated with the selected precip-
itation stations; and (3) define a separate precipitation-sta-
tion set to determine daily precipitation frequency.
Precipitation and temperature stations are selected inde-
pendently since the best precipitation station choice general-
1y differs from the best choice for temperature disiribution in
a basin. For every combination of these precipitation- and
temperature-station sets, a precipitation bias and a station set
to indicate precipitation frequency are also tested. The range
of the bias correction is from 0 to 50 percent and the correc-
tion 1s applied only to snowfall events. The correction actu-
ally compensates for the net effect of a number of biases
related to precipitation measurement, such as gange under-

- catch, gage location, and/or lack of ganges at high elevation.

It may also correct for other sources of bias in PRMS.

The ES analysis is run to test all single stations and pos-
sible combinations of two, three, and four station groups
comprising the xyz-station- sets. For each ES analysis, the -
best station sets for temperature and precipitation, along
with an associated precipitation bias and frequency, are
determined by comparing the sum of the absolute value of
the difference between measured and simulated runoff. The
ES analysis ends when the sum of the absolute errors asso-
ciated with the above combinations shows no significant
improvement from one station group to the next.

Analysis Tools

Optimization and sensifivity analysis tools are provided
in MMS to analyze model parameters and evaluate the
extent to which uncertainty in model parameters affects
uncertainty in simulation results. Two optimization proce-
dures are available to fit user-selected parameters. One is
the” Rosénbrock téchnigué “(Rosenbrock, 1960), as it is
implemented in PRMS, The szcond is a hyper-funnel
method (Restrepo and Bras, 1982).

Several methods for parameter sensitivity analysis-are also
provided. One is the method described -in the PRMS unser’s
manual (Leavesley et al., 1983), which allows the evaluation
of a variety of measures including relative parameter sensi-
tivity, error propagation, and parameter correlation. A second
method evaluates the sensitivity of any pair of parameters
and develops the objective function surface for a selected
range of these two parameters. To address the question of
parameter uncertainty, a Monte Carlo procedure is available
to evaluate alternative combinations of model parameters.

The basic measures of model and parameter performance
used in this stody were the comparisons of measured to sim-
wlated daily streamflows. One measure was expressed in




terms of the sum of the absolute values of the differences
between measured and simulated daily streamflow. This
measure was used as the objective fimction in all mode] cal-
ibrations and was used for comparison of individual param-
eter sensitivity and performance. A second measure was the
Nash-Sutcliffe coefficient of efficiency (CE) (Nash and
Sutcliffe, 1970). It was used as a measure of model per-
formance for alternative parameter sets.

METHODOLOGY
Parameter Estimation

PRMS HRUs were delineated and characterized using the
(IS Weasel. The Apimas, Carson, and Cle Elum River
basins were divided into 121, 96, and 124 HRUs, respec-
tively. Spatially distributed topographic, vegetafion, and
soils parameters on each HRU were estimated using avail-
able digital datasets. The datasets used were: (1) USGS 3-
arc second digital elevation models (DEMs); (2) 1-km grid-
ded version of the State Soils Geographic (STATSGO) scils
data (U.8. Department of Agriculture, 1994); (3) Forest
Service 1km gridded vegetation type and forest-density
data (U.S. Department of Agriculture, 1992): and the USGS
GIRAS land-use/tand-cover gridded coverage. A composite
of GIRAS Land Cover and the Forest Type Groups was cre-
ated. In this composite, the GIRAS data was only used
where the Forest Type Group data described “non-forast”.
The resulting Land Cover dataset has a total of 44 classes.

Topographic parameters such as elevation, slope, and
aspect were computéed for each HRU using the USGS 3-arc
second DEM. Elevation was calculated as the median of the
distribution of the DEM grid-cell elevations. Slope was cal-
culated as the mean of the disttibution of the grid-cell
slopes. Grid-cell aspect values were reclassified into one of

. eight aspect classes that represent the eight cardinal points..

of the compass. HRU aspect was calculated as the aspect
class having the dominant number of grid cells.

The vegetation type and density datasets were used to
estimate vegetation-type and vegetation-cover-density
parameters on each HRU, as well as the associated patame-
ters of interceptiom-storage capacity and the transmission
coefficient for solar radiation. HRU vegetation type was
reclassified into one of four classes defined as forest, shrub,
grass, and bare. HRU vegatation type was then determined
as the dominant reclassified vegetation type in an HRU.
Vegetation cover density was defined as the percentage of
the area of the HRU covered by the dominant vegetation
type canopy. For forest vegetation types, the canopy densi-
ty was assumed to be equal to the mean of the forest-densi-
ty values for the forest types found in the HRU, expressed
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as a percentage of the entire HRU area. For example, an
HRU with 60 percent of its area in forest having a mean for-
est density of 50 percent would have a vegetation cover den-
sity of 30 percent.

Interception-storage capacity was calculated by multiply-
ing the computed HRU vegetation cover density times the
average depth of precipitation storage per unit area of the
cover type. A table of interception-storage-capacity values
for all vegetation types was created using values from the
literature. For deciduous vegetation types, cover density and
its associated interception-storage capacity were calculated
for two periods, one with and one without leaves, The trans-
mission coefficient was calculated using the "cover density
- transmission coefficient” relation provided in the PRMS
user’s manual (Leavesley et al., 1983). For deciduous vege-
tation, the cover density for the period without leaves was
used in this computation.

Soil type in PRMS is categorized as sand, loam, or clay,
and was calculated for each HRU using the goil texture data
in the STATSGO soil dataset. Soil type was calculated as
the dominant soil type ot the HRU. The available water-
holding capacity of the soil on each HRU is a function of the
water-holding characteristics of the soil and the average
rooting depth of the dominant vegetation. Calculation began
with the identification of the dominant vegetation type.
Average rooting depth for each vegetation type was esti-
mated from the literature and a table of rooting-depth values
was linked to the vegetation-type dataset. Available water-
holding capacity values in the STATSGO dataset were
processed to provide an average water-holding capacity
value per unit depth of soil. This value was multiplied times
the average rooting depth of the HRU vegetation type to
calculate the HRU water-holding capacity.

Climate-related parameters were estimated using daily
data obtained from the National Weather Service and the.

SNOTEL data network. Precipitation- and temperature-

distribution relations were computed using the xyz method-
ology. A threshold temperature parameter (imax_alisnow) is
used to determine precipitation form (rain, snow, or a coni-
bination of both). The estimate of tmax_allsnow was based
on the assumptions that a precipitation event will have a
cloud base 305 m above the ground and that a temperature
at the cloud base of 0° C will produce snow. The 0° C cloud-
base temperature was assumed to provide a near-surface air
temperature of 1.7° C for tmax_allsnow.

PRMS parameters related to the partitioniig of water
among processes related to surface, subsurface, and ground-
water flow, as well as all remaining parameters, were esti-
mated from the results of other model applications in these
mountainous regions and were provided as a common set
for all the basins.
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Parameter Evaluation

Evaluation of the a priori parameter-estimation methods
and their use in constraining parameter calibration was con-
ducted by examining model performance at four levels of
parameter fitting. At the first level, the modei was run using
all estimated parameters. No calibration was conducied. HRU
and meteorological parameters were estimated using the GIS
Weasel and the regional MLR relations of the xyz methodol-
ogy. The subset of precipitation and temperature stations used
consisted of all stations within or immediately adjacent to the
modeled basin. No exhaustive search was conducted.

The second level focused on the calibration of those
parameters related to obtaining reasonable monthly and
anmual water-balances. The parameters fitted were those
controlling the magnitzde and distribution of precipitation
and potential evapotranspiration (PET). PET was computed
using a modified Jensen-Haise method (Jensen et al., 1969)
with a parameter valne that was varied by month. The
monthly PET parameter values were calibrated to monthly
estimates of PET for each region based on values obtained
from the literature. Then the éxhaustive search was applied
in the xyz method to determine the optimal station set, bias
correction, and precipitation frequency station set.

At the third level, the fitted values obtained at level two
were retained and the additional parameters that affect the
timing of streamflow were optimized. These included
parameters affecting precipitation form, snowmelt rates, and
the rates and timing of surface, subsurface, and ground-
water flow processes.

At the fourth level, the fitted values obtained at level three
were retained and the most sensitive spatial and non-spatial
PRMS parameters were calibrated. This included several of
the parameters estimated using the GIS Weasel. Level 4 was

sitive parafmeters. 0 T
With the exception of the xyz methodology, all parameter
calibrations were conducted using the Rosenbrock optimiza-
tion technique. The procedure used to fit distributed parame-
ters was to adjust all values of a specific parameter simulta-
neously. The assumption was made that all the values of a
distributed parameter were correct relative to each other and
to their spatial location. The mean value of the parameter and
the deviation from the mean for each HRU was computed.
The mean was then adjusted and the deviations were used to
recompute the individual HRU values. In the recomputation
procedure, the HRU values can be increased or decreased by
the same magnitude or by the same percentage of their initial
value. An upper and lower bound were specified for each
parameter, and individual HRU wvalues were reset to the
boundary value if they exceeded the specified bound.

Meteorological and streamflow time-series data were
available for the period 1978-1996 in the Animas and
Carson basins and 1978-1994 in the Cle Elum basin.
Parameter calibration was conducted using the period 1978-
1988 and all analyses of parameter sensitivity and model
performance were conducted using the period 1989 to the
end of the record or selected years within this period.

RESULTS
Parameter Sensitivity

A first step in the evaluation of parameter-estimation
methods was to determine if the model had any sensitivity
to the parameters being estinmiated. Parameter sensitivities
were determined using the PRMS sensitivity analysis proce-
dures. For comparative purposes the parameters were
grouped into the general categories of (1) GIS Weasel com-
puted, (2) meteorological process, and (3) runoff timing
process. A selection of the most sensitive parameters in each
group is shown in Table 2.

Comparing differences among the parameter groups for
all basins showed that the meteorological parameters, in
most cases, were about an order of magnitude more sensi-
tive than those in the other two groups. Tmax_allsnow is a
scalar value but was applied to each HRU and thus affected
the spatial distribution of rain and snow through the effect of
the temperature-distribution relations determined using the
xyz-method.

Differences among the basins within parameter groups
reflected the differences in the climatic and physiographic
characteristics of the three mountain regions. The most sen-
sitive GIS Weasel estimated parameters were (1) winter
cover density (covden_win) and solar radiation transmission
coefficient {rad_trncf) which affect the snowpack energy
balange relations, and (2) the Jensen Haise HRU ET coeffi-
cient (Gh_coef hrm) and available soil-water storage
(soil_moist. max) which affect the water-balance relations.
The higher sensitivity of rad.tmcf in the Animas basin
reflects the somewhat larger effect of shortwave radiation on
the snowpack energy balance in the Rocky Mountains as
compared to the Sierra Nevada and Cascade ranges. The
most sensitive parameter in the meteorological group in all
basins was tmax_allsnow, which delineates precipitation
form between snow and rain. It was most sensitive in the
Carson and Cle Elum basins where rain-snow corabinations
and rain-on-snow events are mmuch more common than in the
Animas basin. '

The most sensitive runoff-timing parameters were the

_ emissivity term in the longwave energy ecquation

femis_noppt) and the daily flux rate of water movement
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Table 2. Percent change in model standard error for a 10 percent
increase in selected parameter values.

Group Parameter Animas E Fk Carson Cle Flhum
GIS Weasel covden_win 02 1.01 02
ih_coef hru 58 28 07
rad_trncf 2.66 .82 17
soil_moist_max Al 15 .05
Meteorological adjmix_rain 2.80 95 .39
bias 61 .02 01
imax_allrain 7.31 2.13 .02
tmax_allsnow 8.51 30.45 21.67
Runoff Timing emis_noppt 78 3.14 .59
gwilow_coef 09 .18 .01
soil2gw_max .63 .38 .05
ssrcoef_sq .05 .09 10

from the soil zone to the ground-water reservoir
(soil2gw_max). The emis_noppt parameter affects the long-
wave energy balance computation for days with no precipi-
tation. Soil2gw_max affects the distribution of runoif
between more rapid subsurface and slower ground-water
flow sources. Comparing the sensitivity of rad_tmef to
emis_noppt within edch basin indicates the relative effects
of shortwave and longwave energy on the total energy bal-
ance for snowmelt computations in each basin. Rad trncf is
more sensitive than emis_noppt in the Animas basin but less
sensitive in the Cle Elum basin, which is again indicative of
a greater effect of shortwave energy in the Animas basin.
The smaller sensitivity of rad_trncf in the Carson basin may
be anomalous and is related to a problem of the underesti-
mation of rad_trncf discussed in the next section.

- Uncalibrated Parameters

Evaliuation of the performance of selected a priori param-
eter estimates was conducted using a Monte Carlo analysis
procedure. A test case was constructed to evaluate a selected
set of sensitive parameters that were estimated from the spa-
tial and climatic datasets. One thousand model runs were
made using-parameter sets with randomly generated values
for the four parameters estimated by the GIS Weagel (Table
2) and the tmax_allsnow and the bias parameters. The results
for the rad_trncf, soil_moist_max, and tmax_allsnow param-
eters on each basin are shown as dotty plots in Figure 2.
These plots reflect the concept of equifinality where a num-
ber of different parameter sets may be suitable for reproduc-
ing observed basin streamflow (Beven and Freer, 2001). The
arrows- indicate the dots that represent the uncalibrated

model parameter set and objective function values of the ini-
tial uncalibrated run. For a distributed parameter, the x-axis
value is the mean of all HRU values weighted by HRU area.
The objective-function values for the uncalibrated runs are
larger than the objective-function values for the best-fit runs
by about 45 percent in the Animas basin, 85 percent in the
Carson basin, and 30 percent in the Cle Elum basin.

The parameter sefs containing the best-fit valves for
rad_trncf were reasonably well constrained on the Animas
and Carson basins but less so on the Cle Elum. This reflects
in part the sensitivity of each basin to shortwave energy
input. The mean of the a priori estimate of rad_troncf was
overestimated in the Animas basin and underestimated in
the Carson basin but had a value with a less clearly defined
error in the Cle Elum basin. The higher estimate of
rad_trn¢f in the Animas basin produced an overestimate of
shorfwave energy available for. snowmelf ‘while the lower
estimate in the Carson and Cle Elum produced an underes-
timate of shortwave energy available for snowmelt.

The a priori estimates of rad_trnef were computed using
the HRU winter vegetation cover densities computed from
the forest-density dataset. The estimated mean value of the
winter cover-density parameter covden_win was about 35
percent in the Animas basin and about 71 percent in the
Carsen and Cle Elum basins. The mean value of 71 percent
for covden_win in the Carson basin. appeared high. An
examination of the forest density dataset for the Carson
basin showed a large number of grid cells with the value of
100 percent forest density. The forest density values were
based on the coregistration of Advanced Very High
Resolution Radiometry (AVHRR) data and Landsat
Thematic Mapper (TM) and on regression analysis of sta--
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Figure 2, Monte Carlo analyses for the parameters rad_trncf, soil_moist_max, and tmax_allsnow on the Animas,
Carson, and Cle Elum basins. (Arrows indicate uncalibrated parameter set values and results,)

tistical relations between the two data types (Zhu, 1994).
The forest density was the percentage of forested TM cells
within one AVHRR cell. There were about 1,225 TM cells |
in an AVHRR cell and a TM cell was considered forested if
it contained a classified forest type.

“Thus, 100 percent forest density from the dataset does not .
necessarily mean 100 percent cover of the fand surface, only
that 100 percent of the TM cells had some forest cover.
However, covden_win is defined as one minus the percent-
age of the sky visible from the land or snow surface. A value



of 100 percent forest cover effectively eliminates shortwave
energy from the snowpack energy-balance computation.
The forest-demsity dataset was used as an index of cov-
den_win in this application and some adjustment for the dif-
ference in interpretation will be needed to better estimate
covden_win and rad_trncf.

The soil_moist_max parameter was computed from the
STATSGO soils dataset. It shows a much larger degree of
uncertainty when compared to the other two parameters
shown (Figure 2). This reflects the fact that in the snowmelt
regions selected, the soil typically remains at or near field
capacity during most or all of the snowmelt-runofl period
and thus its storage capacity has only a small effect on
streamflow. The snowmelt period is the major source of the
annual streamflow in these basins. Consequently, the value
of the STATSGO dataset for estimating soil_moist_max
cannot be fully evaluated in these basins.

The relative insensitivity of tmax_allsnow in the Animas
basin reflects the fact that there are few winter rain or rain-
snow mixed events and that most snow events occur at tem-
peratures well below 1.7° C. In the Carson and Cle Elum
basins, winter rain and rain-snow mixed events are more
common aod the threshold effect of tmax_allsnow is more
evident. The large increase in the objective function at
tmax_allsnow values less than about 0° C results from the
associated increase in the proportion of rain versus snow.
This response provides some confidence that the model
responds correcily to physically unrealistic values of
tmax_allsnow. Smaller increases in the objective function
for tmax_allsnow values greaier than 0° C may indicate less
sensitivity to decreases in the proportion of rain versus
snow, or that rain events occur at temperatures much
warmer than 0° C.

Constrained Calibration Performance

fiiting was measured using the Nash-Suicliffe CE (Table 3).
The uncalibrated parameters produced the poorest perform-
ance of all the levels of fitting. At this level, the best simn-
lation results were obtained in the Animas basin with less
satisfactory results in the other basins,

At the second level, calibrating the PET parameter and
applying the exhaustive search procedure in the xyz
methodology provided improved results in all basins. The
increases in the CE were 0.26 in the Carson basin and 0.05

in the Animas and Cle Elum basins. The smalier levels of .

improvement in the Animas basin implies that the initial
selection of climate stations in and near the basin was rea-
sonable but that improvement in model performance is pos-
sible. A similar statement can be made for the Cle Elum
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basin but only after observing the results from level 3 which
indicated that timing was a larger source of error than the
water balance,

The fitted bias comrections, associated with gauge-catch
error for snow, were 30, 0, and 10 percent for the Animas,
Carson, and Cle Elumn basins respectively. These values
appear reasonable, with the exception of the Carson basin.
As with any parameter fitting exercise, the station-get selec-
tion and bias correction may be adjusting for biases in the
data as well as biases in other parameters or model concep-
tualizations.

Calibrating the runoff-timing parameters at level three
increased the CE by 0.17 for the Cle Elum basin but only
0.05 and 0.02 for the Carson and Animas baging respective-
ly. Calibrating the GIS Weasel estimated parameters at level
four increased the CE an additional 0.05 in the Animas and
Cargon basins but only 0.01 in the Cle Elum basin.

The stepwise fitting provided a mixed picture of the value of
the estimated parameters in each group. Improvement in
model performance varied among the basins with the fitting of
each group. Improvement in the Animas was about the same
for each fitting step, while the meteorological parameter fitting
on the Carson and timing parameter fitting on the Cle Elum
provided the greatest improvement in model performance.

DISCUSSION AND CONCLUSIONS

The results presented have provided an overview of the
initial methods and tools that are being integrated into a
modeling framework for use in the development, testing,
and application of a priori parameter-estimation methodolo-
gies. While limited in scope, the results raise a number of
issues that need to be addressed in the continved develop-
ment and enhancement of the methods and tools. These

T isquesrelate 1o the general categories of datasets, parameter-

-Table 3, Nash-Sutcliffe coefficient of efficiency for four levels o

parameter fitting.
Lével Animas East Fork VCIe
Carson Elum
| 1. Uncalibrated 73 A7 52
2. Exhaustive search xyz 78 173 57
3. Optimize timing .80 .78 74
4. Pull optimization .85 .83 a5
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estimation methods, and measures of model performance.
Dataset issues include concems of dataset consistency,
areal extent, and value. The datasets used in this study were
selected because they were available for the entire United
States and each was produced with a consistent methodolo-
gy. This enabled the comparison of parameter estimation
-methods and the information content of the dataset among
different regions of the United States. The value of a dataset
relates to measures that include the accuracy of the data and
the effect of the data on improved model performance. The
value of the STATSGO soils dataset was shown to be limit-
ed in the basins tested because of the insensitivity of the
model to the computed available water-holding capacity
parameters. To get a more complete measure of the value of
the STATSGO dataset, basins with rain as a more dominant
precipitation form will need to be included in the study.
Expanding the study to all regions of the United States will
enable a comparable evaluation of the value of other avail-
. able datasets for a range of models and process parameteri-

- zZations. — -

Alternatively, parameters calculated using the vegetation
type and density datasets had a much higher sensitivity but
raised another concern that leads into the issue of appropri-
ate parameter-estimation methodology. An attempt was
made to use the forest density dataset as a surrogate for the
forest cover density parameter in PRMS. However, incon-
sistencies in the interpretation of these two physical meas-
ures were a major source of parameter and model error.

An alternative approach to using dataset values directly in
parameter computation is to first calibrate spatially distrib-
uted parameters on a typical set of basins within a region of
interest. Then regression equations, relating the calibrated
parameter values to values in the dataset, are developed.
The resulting regression equations and original datasets are
then used to estimate distributed parameters on other basins

- in 'the région (Abdulla and Letterimaiér, 1997; Xi, 1999).

While the referenced examples used modeling approaches
different frem PRMS, the method shonld be applicable to a
wide of variety of lumped and distributed medels. One con-
cemn, however, is that fitted parameters may be biased by
other sources of error, thus the valne of this approach com-
pared fo other approaches needs more evaluation. It also
requires a reasonable number of gauged basins with suffi-
cient spatial variability to address the full range of related
basin characteristics and parameter values.

Methods to define the distribution of precipitation and
temperafure are key to being able to accurately simulate dis-
tributed hydrologic processes and streamflow. While this is
a problem in all regioms, it is most pronounced in areas of

complex and mountainous terrain. In the Animas basin, the
uncalibrated xyz methodelogy using precipitation and tem-

perature stations in and near the basin produced reasonable
model performance. Application of the xyz exhanstive
search procedure brought model performance in the Carson
basin to an acceptable level and improved performance in
the Animas basin further. The testing and development of
the xyz methodology began in mountainous regions and has
only recenily begun testing in other regions of the United
States. It should be applicable for temperature distribution
in all climatic and physiographic regions. For precipitation
distribution, it is most applicable for frontal type precipita-
tion events that occur over an entire watershed. Modifica-
tions to the current xyz method as well as other techniques
are being evaluated for use with more localized, convective-
type storms.

In the Cle Elum basin the effects of the xyz methodology
on model performance was masked to some degree by the
errors associated with poor estimates of the runoff-timing
parameters. This observation identifies two issues. One is
the general lack of a regional or global dataset for geologi-
cal and hydrogeological characteristics that could be used-to .
assist in the estimation of runoff-timing parameters related
to the apportioning of the surface and surface components
of streamflow generation. These parameters were estimated
from model application to other basins in this region and the
results reflect some of the potential difficulties in transfer-
ring parameters from one basin to another.

The second issue is the question of how to best identify

and measure the sources of error, such as data, parameter,
and model error, and what measures are most appropriate
for objectively defining parameter and model performance,
The Animas and Carson model results were described above
as being acceptable. The level of acceptability is typically a
subjective judgment and needs to be more clearly defined in
terms of what specific measures are most appropriate and
what are acceptable magnitudes of those measures.
- Measures of model pérforinance are also neéded to com-
pare uncalibrated performance versus the calibrated model.
Appropriate measures could be used to provide confidence
Iimits for simulation results on ungauged basins. Such
measures would also provide a consistent way to compare
other methodologies and models. Defining the appropriate
measures of performance is a question that still needs to be
addressed.

Historically the measure most typically nsed for calibrat-
ing and evalvating distributed parameters has been stream-
flow. However, streamilow integrates the spatial variability

_of the process parameters being fitted. Thus it is possible to

obtain a reasonable simulation for the wrong reason. A more
appropriate measure of distributed parameter performance
would be spatial measures related to the process being sim-
vlated. Increasing availability of remotely sensed data is.



now making it possible to begin to develop some independ-
ent measures of distributed parameter model performance,
One such measure currently available is snow-covered area.
The ability of PRMS to adequately simulate streamflow
*and the spatial and temporal distribution of snow-covered
area has been demonstrated in the Carson basin (Leavesley
.and Stannard, 1990) and in five basins adjacent to the
Animas basin (Leavesley et al., 2002). A comparison of the
model simulated snow-covered area with that measured by
satellite, throughout the melt season, showed that the spatial
and temporal distribution of snowpack accumulation and
melt agreed well with the satellite data for the basins in both
regions., Concurrently, simulated streamflow agreed well
with the volume and timing of measured streamflow. The
agreement in simulated snow-covered area and streamflow
volume and timing infer a measure of confidence in the
parameter estimation methods applied and in the tramsfer-
ability of the methods to ungauged basins. The Carson and
Animas basins were selected for this study in part based on
the results of these previous studies.

To address the issues raised in this study and to build on
its results, the parameter-estimation methodologies will be
tested and enhanced using tens of basins in a number of cli-
matic and physiographic regions of the United States using
a varicty of process conceptualizations. Test basins provid-
ed by the Model Parameter Estimation Experiment
(MOPEX) project (http./fwww.nws.noaa.gov/oh/mopex/),
which is a cooperative activity of the international scientific
community, will be used to expand the study to basins in
other regions the world.

To facilitate this, the GIS Weasel and xyz methods will be
enhanced to opérate in a batch mode. User-specified recipe
files in the GIS Weasel will define the delineation, charac-
terization, and parameterization procedures to be applied to
the select basins in each region. Alternative recipe files will

* be developed for each model and each set of parameter esti-

mation methods and datasets to be evaluated. The Shuffle '

~ Complex Evolution Optimization algorithm (Duan et al.,
1993) and the Multi-Objective COMplex Evolution algo-
rithm (Yape et al., 1998; Gupta et al., this volume, "Multiple
Criteria Global Optimization for Watershed Model
Calibration™), which is capable of solving multi-objective
optimization problems, are also being incorporated in to
MMS. The Monte Carlo methodology is being expanded to
incorporate the Generalized Likelihood Uncertainty
Estimation (GLUE) procedurs (Beven and Binley, 1992;
Beven and Freer, 2001; Freer et al., this vohime).

This research effort is not unique. A variety of systems
and tools to address the issues of parameter estimation and
uncertainty analysis are being developed by other invesfiga-
tors using approaches that include multi-criteria optimiza-
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tion, sensitivity analysis, and generalized likelihood uncer-
tainty analysis techniques (Beven and Binley, 1992; Beven
and Freer, 2001; Yapo et. al., 1998; Wagener et. al., 1995;
Wheater and Lees, 1999). What separates MMS from these
other systems is the Open Source software system approach
in which all members of the scientific community can par-
ticipate in the design and development of the system frame-
work, process modules, and analysis and support tools. The
resulting toolbox will facilitate the multidisciplinary, sys-
ternatic approach that is needed to 1) identify the muost
appropriate estimation methods for use with different mod-
els in different climatic and physiographic regions, and 2)
define the robustness and reliability of these methods and
their associated datasets.

Further information on MMS and the GIS Weasel can be
found at:

http:/fwwrwbrr.cr.usgs. gov/mms
http:/fwwwhbrr.cr.usgs.gov/weasel
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